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Transethnic Genetic-Correlation
Estimates from Summary Statistics

Brielin C. Brown,1,* Asian Genetic Epidemiology Network Type 2 Diabetes Consortium,
Chun Jimmie Ye,2 Alkes L. Price,3 and Noah Zaitlen4

The increasing number of genetic association studies conducted in multiple populations provides an unprecedented opportunity to

study how the genetic architecture of complex phenotypes varies between populations, a problem important for both medical and pop-

ulation genetics. Here, we have developed a method for estimating the transethnic genetic correlation: the correlation of causal-variant

effect sizes at SNPs common in populations. This methods takes advantage of the entire spectrum of SNP associations and uses only

summary-level data from genome-wide association studies. This avoids the computational costs and privacy concerns associated with

genotype-level information while remaining scalable to hundreds of thousands of individuals and millions of SNPs. We applied our

method to data on gene expression, rheumatoid arthritis, and type 2 diabetes and overwhelmingly found that the genetic correlation

was significantly less than 1. Our method is implemented in a Python package called Popcorn.
Introduction

Many complex human phenotypes vary dramatically in

their distributions between populations as a result of a

combination of genetic and environmental differences.

For example, northern Europeans are on average taller

than southern Europeans,1 and African Americans have

an higher rate of hypertension than European Ameri-

cans.2 Differences in allele frequencies, effect sizes, and

genetic architectures drive the genetic contribution to

population phenotypic differentiation. Understanding

the root causes of phenotypic differences worldwide

has profound implications for biomedical and clinical

practice in diverse populations, the transferability of

epidemiological results, aiding multi-ethnic disease map-

ping,3,4 assessing the contribution of non-additive and

rare-variant effects, and modeling the genetic architecture

of complex traits. In this work, we consider a central

question in the global study of phenotype: do genetic

variants have the same phenotypic effects in different

populations?

Although the vast majority of genome-wide association

studies (GWASs) have been conducted in European popu-

lations,5,6 the growing number of non-European and

multi-ethnic studies4,7,8 provide an opportunity to study

distributions of genetic effects across populations. For

example, one recent study used mixed-model-based

methods to show that the genome-wide genetic correla-

tion of schizophrenia between European and African

Americans is nonzero.9 Although powerful, computational

costs and privacy concerns limit the utility of genotype-

based methods. In this work, we make two significant con-

tributions to studies of transethnic genetic correlation.

First, we expand the definition of genetic correlation to
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better account for a transethnic context. Second, we

develop an approach that uses only summary-level

GWAS data to estimate genetic correlation across popula-

tions. Like other recent methods based on summary statis-

tics,10–21 our approach supplements summary association

data with linkage disequilibrium (LD) information from

external reference panels, avoids privacy concerns, and is

scalable to hundreds of thousands of individuals and mil-

lions of markers. Unlike traditional approaches that focus

on the similarity of GWAS results,22–26 we use the entire

spectrum of GWAS associations while accounting for LD

to avoid filtering correlated SNPs.

In a single population, the genetic correlation of two

phenotypes is defined as the correlation coefficient of

SNP effect sizes.19,27 In multiple populations, differences

in allele frequency motivate multiple possible definitions

of genetic correlation. Because a variant can have a higher

effect size but lower frequency in one population, we

consider both the correlation of allele effect sizes and the

correlation of allelic impact. We define the transethnic ge-

netic-effect correlation (rge, previously defined by Lee

et al.27 and implemented in Genome-wide Complex Trait

Analysis [GCTA]) as the correlation coefficient of the per-

allele SNP effect sizes. Similarly, we define the transethnic

genetic-impact correlation (rgi) as the correlation coeffi-

cient of the population-specific allele-variance-normalized

SNP effect sizes.

Intuitively, the genetic-effect correlation measures the

extent to which the same variant has the same phenotypic

change, whereas the genetic-impact correlation gives more

weight to common alleles than to rare ones separately in

each population. Consider the case of a SNP that is rare

in population 1 but common in population 2 and has an

identical effect size in both populations. In this case, the
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correlation of effect sizes (genetic-effect correlation, rge)

is 1. This, however, provides an incomplete picture of the

relationship between the two populations, given that the

allele has a much bigger impact on the distribution of

the phenotype in population 2. Therefore, we define the

genetic-impact correlation, rgi, as the correlation of effect

sizes after genotypes are normalized to have mean 0 and

variance 1. In our hypothetical case, rgi < rge, but the

opposite can also be true. Consider again the case of a

SNP rare in population 1 but common in population 2. If

the effect size is large in the first population but small in

the second, then rge might be much less than 1, but the

impact of the allele in the two populations will be similar.

Therefore, rgi will be close to 1. Although other definitions

of the genetic correlation are possible (see Discussion),

these quantities capture two important questions about

the study of disease in multiple populations: to what

extent do the same mutations in multiple populations

differ in their phenotypic effects, and to what extent are

these differences mitigated or exacerbated by differences

in allele frequency?

To estimate genetic correlation, we take a Bayesian

approach wherein we assume genotypes are drawn sepa-

rately from within each population and effect sizes have

a normal prior (the infinitesimal model28). Although this

model is unlikely to represent reality, it has been used suc-

cessfully in practice.9,17,18,29,30 The infinitesimal assump-

tion yields a multivariate normal distribution on the

observed test statistics (Z scores), where the covariance

matrix is a function of the heritability and genetic correla-

tion. Rather than pruning SNPs in LD,11,31,32 this allows us

to explicitly model the resulting inflation of Z scores. We

then maximize an approximate weighted likelihood

function to find the heritability and genetic correlation.

This method is implemented in a Python package called

Popcorn. Although it is derived for quantitative pheno-

types, Popcorn extends easily to binary phenotypes under

the liability threshold model. We show via extensive

simulation that Popcorn produces unbiased estimates of

the genetic correlation and the population-specific herita-

bilities with a SE that decreases as the number of SNPs and

individuals in the studies increases. Furthermore, we show

that our approach is robust to violations of the infinites-

imal assumption.

We applied Popcorn to European and Yoruban gene-

expression data,33 as well as GWAS summary statistics

from European and East Asian cohorts affected by rheuma-

toid arthritis (RA) and type 2 diabetes (T2D).34,35 Our anal-

ysis of GEUVADIS (Genetic European Variation in Health

and Disease) data showed that our summary-statistic-based

estimator is concordant with the mixed-model-based esti-

mator. We found that the mean transethnic genetic corre-

lation across all genes was low (rge ¼ 0.320 [0.009]) but

increased substantially when the gene was highly heritable

in both populations (rge ¼ 0.772 [0.017]). In RA and T2D,

we found rge to be 0.463 (0.058) and 0.621 (0.088),

respectively.
Th
Across all phenotypes considered, we overwhelmingly

found that the transethnic genetic correlation is signifi-

cantly less than 1. This observation highlights the need

to study phenotypes in multiple populations because it

implies that, up to the effects of unobserved variants,

effect sizes at common SNPs tend to differ between popu-

lations. This indicates that results might not transfer

between populations, and therefore predicting disease

risk in non-Europeans on the basis of current GWAS

results could be problematic. Our results provide further

evidence that gaining insight into the genetic architec-

ture of complex traits will require a multi-population

approach.
Material and Methods

Our method takes as input summary association statistics from

two studies of a phenotype in two different populations, along

with two sets of reference genotypes each matching one of the

populations in the study. Our method has two steps: first, we esti-

mate the diagonal elements of the LD-matrix products S2
1, S

2
2, and

S1S2; second, using these estimates, we find the maximum-likeli-

hood values and estimate SEs of the parameters of interest: h2
1 or h

2
2

and rge or rgi. The details follow.

Consider two GWASs conducted on the same phenotype in

different populations. Assume we have N1 individuals genotyped

on M SNPs in study 1 and N2 individuals genotyped on the

same SNPs in study 2. Let X1 and X2 be the matrices of mean-

centered genotypes in studies 1 and 2, respectively, and let Y1

and Y2 be their normalized phenotypes. Let f1 and f2 be vectors

of the allele frequencies of the M SNPs common to both popula-

tions. If we assume Hardy-Weinberg equilibrium within each

population separately, the allele variances are s21 ¼ 2f1ð1� f1Þ
and s22 ¼ 2f2ð1� f2Þ. Let b1 and b2 be the (unobserved) per-

allele effect sizes for each SNP in studies 1 and 2, respec-

tively. The heritability in study 1 is then h2
1 ¼ Sis

2
lib

2
li (and like-

wise for study 2). The objective of this work is to estimate

transethnic genetic correlation from summary statistics of com-

mon variants, Z1 ¼ ½ðX1=s1ÞTY1�=
ffiffiffiffiffiffi
N1

p
(and likewise for study 2),

and estimates of population LD matrices (S1 and S2) from

external reference panels. Define the genetic-effect correlation

as rge ¼ Cor(b1, b2) and the genetic-impact correlation as

rgi ¼ Cor(s1b1, s2b2).

We assume that the genotypes are drawn randomly from each

population and that phenotypes are generated by the linear model

Y1 ¼ X1b1 þ ε1 (likewise for phenotype 2). When effect sizes b are

assumed to be inversely proportional to allele frequency, as is

commonly done,17,30 we show (Appendix A) that under the linear

infinitesimal genetic architecture, the joint distribution of the

Z scores from each study is asymptotically multivariate normal

with mean 0
!

and variance

VarðZÞ ¼

26664
S1 þ N1 þ 1

M
h2
1S

2
1 rgi

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
M

S1S2

rgi

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
M

S2S1 S2 þN2 þ 1

M
h2
2S

2
2

37775:
(Equation 1)

However, when effect sizes are assumed to be independent of

allele frequency, we show
e American Journal of Human Genetics 99, 76–88, July 7, 2016 77



VarðZÞ ¼

26666664
S1 þN1 þ 1

ks2
1 k 1
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1S1s

2
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q
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1h

2
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2S2s
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37777775: (Equation 2)
Given these equations for variance, we can estimate the quanti-

ties rgi or rge and h2
1 or h2

2 by maximizing the multivariate normal

likelihood, lðrgfi;eg;h2
1;h

2
2jZ;S; sÞf� lnðjC j Þ � ZTC�1Z, where C is

either of the above covariance matrices in Equation 1 or 2. Because

S1 and S2 are estimated from finite external reference panels, esti-

mating themaximum likelihood of the abovemultivariate normal

distribution leads to over-fitting. We employ two optimizations to

avoid this problem. First, we maximize an approximate weighted

likelihood that uses only the diagonal elements of each block of

Var(Z). This allows us to account for the LD-induced inflation of

tests statistics, but it discards covariance information between

pairs of Z scores and therefore leads to over-counting Z scores of

SNPs in high LD. To compensate for this, we downweight Z scores

of SNPs in proportion to their LD. Second, rather than compute

the full products S2
1, S

2
2, and S1S2 over all M SNPs in the genome,

we choose a window size W and approximate the product by

ðSaSbÞii ¼
Pw¼iþW

w¼i�Wraiwrbiw. These optimizations are similar to those

employed by LD-score regression.17 The full details of the deriva-

tion and optimization are provided in Appendix A.
Results

Simulated Genotypes and Simulated Phenotypes

Using HAPGEN2,34 we simulated 50,000 European (EUR)-

like and 50,000 East Asian (EAS)-like individuals at

248,953 chromosome 1–3 SNPs with an allele frequency

above 1% in both EUR and EAS HapMap 3 populations.

HAPGEN2 implements a model that combines haplotype

recombination with mutation and results in excess local

relatedness among the simulated individuals. To account

for this local structure, we used PLINK 235 to filter individ-

uals with genetic relatedness above 0.05, resulting in 4,499

EUR-like individuals and 4,837 EAS-like individuals. From

these simulated individuals, 500 per population were cho-

sen uniformly at random to serve as an external reference

panel for estimating S1 and S2.

In each simulation, effect sizes were drawn from

a ‘‘spike and slab’’ model, where b1i; b2i �

N
0@0;

24 h2
1 rge

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q
rge

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q
h2
2

351A with probability p and

b1i; b2i ¼ ð0;0Þ with probability 1 � p. rgi were analytically

computed from the simulated effect sizes and allele fre-

quencies in the simulated reference genotypes. Quantita-

tive phenotypes were generated under a linear model

with independent and identically distributed noise and

normalized to have mean 0 and variance 1, whereas binary
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phenotypes were generated under a liability threshold

model where individuals are labeled as case subjects

when their liability exceeds a threshold t ¼ F�1ð1� KÞ,
in which K is the population disease prevalence.36

We varied h2
1, h

2
2, rge, and rgi, as well as the number of in-

dividuals in each study (N1 and N2), the number of SNPs

(M), the population prevalence (K), and proportion of

causal variants (p) in the simulated GWASs, and generated

summary statistics for each study. The results shown in

Figure 1 and Figure S1 demonstrate that the estimators

are nearly unbiased as the genetic correlation and heritabil-

ities vary. Furthermore, by varying the proportion of causal

variants p, we show that our estimator is robust to viola-

tions of the infinitesimal assumption (Figure S2). In

Figure S3, we show that the SE of the estimator decreases

as the number of SNPs and individuals in the study in-

creases. In Figure S4, we simulate data for 4,499 EUR-like

individuals and 15,101 EAS-like individuals for a range of

genetic correlations to show that our estimators remain

nearly unbiased when the sample sizes of the two popula-

tions are very different. Finally, we show in Table S1 that

our estimates of the heritability of liability in case-control

studies are nearly unbiased.

Simulations with Nonstandard Disease Models

Our approach, as well as genotype-based methods such as

GCTA, makes assumptions about the genetic architecture

of complex traits. Previous work has shown that violations

of these assumptions can lead to bias in heritability estima-

tion;37 therefore, we sought to quantify the extent to

which this bias might affect our estimates. We simulated

phenotypes under six different disease models: (1) inde-

pendent, where the effect size is independent of allele

frequency; (2) inverse, where the effect size is inversely

proportional to allele frequency; (3) rare, where only

SNPs with an allele frequency under 10% affect the trait;

(4) common, where only SNPs with an allele frequency be-

tween 40% and 50% affect the trait; (5) difference, where

effect size is proportional to the difference in allele fre-

quency; and (6) adversarial, a difference model where the

sign of b is set to increase the phenotype in the population

where the allele is most common. Additional genetic archi-

tectures, including ones where effect sizes are not a direct

function of MAF,38 are possible.

We simulated phenotypes by using genotypes with an

allele frequency above 1% or 5% and compared the true



Figure 1. True and Estimated Genetic-Impact and Genetic-Effect Correlations
All simulations were conducted with a simulated EUR and EAS heritability of 0.5 with 4,499 simulated EUR and 4,836 simulated EAS
individuals at 248,953 SNPs.
and estimated genetic-impact and genetic-effect correla-

tions among all models (Table 1). We found that when

only SNPs with a frequency above 5% in both populations

were used, the difference in rge and rgi was minimal except

in the most adversarial cases. Even in the adversarial

model, the true difference was only 7%. Although they

are unlikely to represent reality, the four nonstandard dis-

ease models result in substantial bias in our estimators.

When SNPs with an allele frequency above 1% in both

populations are included, the differences are more pro-

nounced. This is because the normalizing constant 1/s

rapidly increases as the SNP becomes more rare. Indeed,

as SNPs become more rare, having an accurate disease

model becomes increasingly important. Therefore, we pro-

ceeded with a 5% MAF cutoff in our analysis of real data

and used the notation h2
c to refer to the heritability of

SNPs with an allele frequency above 5% in both popula-

tions (the common-SNP heritability). Note, however, that

one of the advantages of maximum-likelihood estimation

in general is that the likelihood can be reformulated to

mimic the disease model of interest.

Validating Popcorn by Using Gene Expression in

GEUVADIS

We compared the common-SNP heritability ðh2
c Þ and ge-

netic-correlation estimates of Popcorn to those of GCTA

in the GEUVADIS dataset, for which raw genotypes are

publicly available. GEUVADIS consists of RNA-sequencing

(RNA-seq) data for 464 lymphoblastoid cell line (LCL) sam-

ples from five populations in the 1000 Genomes Project.

Of these, 375 are of European ancestry (CEU [Utah resi-

dents with ancestry from northern and western Europe

from the CEPH collection], FIN [Finnish in Finland], GBR

[British in England and Scotland], and TSI [Toscani in Ita-

lia]), and 89 are of African ancestry (YRI [Yoruba in Ibadan,

Nigeria]). Raw RNA-seq reads obtained from the European

Nucleotide Archive (accession number ENA: ERP001942)
Th
were aligned to the transcriptome with hg19 coordinates

from the UCSCGenome Browser. RSEM39 was used for esti-

mating the abundances of each annotated isoform, and

total gene abundance was calculated as the sum of all iso-

form abundances normalized to one million total counts

or transcripts per million (TPM). For mapping of expres-

sion quantitative trait loci (eQTLs), European and Yoruban

samples were analyzed separately. For each population, we

median normalized TPMs to account for differences in

sequencing depth in each sample and standardized to

mean 0 and variance 1. Of the 29,763 total genes, 9,350

with TPM > 2 in both populations were chosen for this

analysis.

For each gene and using 30 principal components as co-

variates, we conducted a cis-eQTL association study at all

SNPs within 1 Mb of the gene body and with an allele fre-

quency above 5% in both populations. We found that

GCTA and Popcorn agreed on the global distribution of

heritability (Figure S5) and that GCTA’s estimates of ge-

netic correlation had a similar distribution to Popcorn’s es-

timates of genetic-effect and genetic-impact correlation

(Figure 2). Although the number of SNPs and individuals

included in each gene analysis is too small for obtaining ac-

curate point estimates of the genetic correlation on a per-

gene basis (N ¼ 464, M ¼ 4279.5), the large number of

genes enables accurate estimation of the global mean her-

itability and genetic correlation.

Common-SNP Heritability and Genetic Correlation of

Gene Expression in GEUVADIS

We found that the average cis-h2
c of the expression of the

genes we analyzed was 0.093 (0.002) in EUR and 0.088

(0.002) in YRI. Our estimates are higher than previously re-

ported average cis-heritability estimates of 0.055 in whole

blood and 0.057 in adipose,40 which could have arisen

for several reasons. First, we removed 68% of the tran-

scripts that are lowly expressed in either YRI or EUR data.
e American Journal of Human Genetics 99, 76–88, July 7, 2016 79



Table 1. True and Estimated Values of Genetic-Impact and Genetic-Effect Correlations in Simulated EUR-like and EAS-like Genotypes

Model

MAF > 0.01 MAF > 0.05

rge rgi brge brgi rge rgi brge brgi

Independent 0.500 0.478 0.500 0.460 0.500 0.488 0.509 0.469

Inverse 0.431 0.500 0.567 0.496 0.479 0.500 0.555 0.482

Rare 0.500 0.467 0.382 0.863 0.500 0.496 0.998 0.756

Common 0.500 0.500 0.522 0.493 0.500 0.500 0.502 0.496

Difference 0.500 0.416 0.354 0.435 0.500 0.461 0.410 0.412

Adversarial 0.710 0.604 0.525 0.651 0.714 0.667 0.601 0.675

Results are the average of 100 simulations with a phenotype heritability of 0.5 in each population.
Second, estimates from RNA-seq analysis of cell lines

might not be directly comparable to microarray data

from tissue.

The average genetic-effect correlation was 0.320 (0.010),

whereas the average genetic-impact correlation was 0.313

(0.010). Notably, the genetic correlation increased as the

cis-h2
c of expression in both populations increased

(Figure 3). In particular, when the cis-h2
c of the gene was

at least 0.2 in both populations, the genetic-effect correla-

tion was 0.772 (0.017), whereas the genetic-impact correla-

tion was 0.753 (0.018).

In order to verify that our analysis did not contain any

small-sample-size or conditioning biases, we analyzed the

genetic correlation of simulated phenotypes over the

GEUVADIS genotypes. We sampled pairs of heritabilities

from the distribution of estimated expression heritability

and simulated pairs of phenotypes to have the given heri-

tability and a genetic-effect correlation of 0.0 over

randomly chosen 4,000 bp regions from chromosome 1

of the GEUVADIS genotypes. Without conditioning, the

average estimated genetic-effect correlation was �0.002

(0.003), indicating that the estimator remained unbiased.

Furthermore, with conditioning on the heritability esti-

mates above a certain threshold, the average estimated

genetic-effect correlation was not significantly different

from 0.0 (Figure S6).

We found that although the average genetic correlation

was low, the genetic correlation increased with the cis-h2
c of

the gene, indicating that as cis-genetic regulation of gene

expression increases, it does so similarly in both YRI and

EUR populations. This could help interpret the recent obser-

vation that although the global genetic correlation of gene

expression across tissues is low,40 cis-eQTLs tend to replicate

across tissues.41 Because the presence of a cis-eQTL indicates

substantial cis-genetic regulation, an analysis of eQTL repli-

cation across tissues implicitly conditions on a high herita-

bility of gene expression and therefore might indicate a

much higher genetic correlation than the average.

Summary Statistics of RA and T2D

Finally, we sought to examine the transethnic rgi and rge in

RA and T2D cohorts for which raw genotypes are not avail-
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able. We obtained summary statistics from a RA GWAS of

58,284 individuals of European descent and 22,515 indi-

viduals of East Asian descent8 and from T2D GWASs of

69,033 individuals of European descent (DIAGRAM stage

142) and 18,817 individuals of East Asian descent.43 We

used genotypes from 504 East Asian and 503 European in-

dividuals sequenced as part of the 1000 Genomes Project

as population-specific external reference panels for our

EAS and EUR summary statistics, respectively. We removed

the major histocompatibility region (chromosome 6, 25–

35 Mb) from the RA summary statistics. We estimated

the common-SNP heritability and genetic correlation by

using 2,539,629 strand-unambiguous SNPs genotyped or

imputed in both RA studies and 1,054,079 strand-unam-

biguous SNPs genotyped or imputed in both T2D studies;

all SNPs had an allele frequency above 5% in 1000 Ge-

nomes EUR and EAS populations. The h2
c and genetic-

correlation estimates are presented in Table 2. Our RA h2
c

estimates of 0.177 (0.015) and 0.221 (0.026) for EUR and

EAS, respectively, are lower than a previously reported

mixed-model-based heritability estimate of 0.32 (0.037)

in Europeans.45 Similarly, our T2D h2
c estimates of 0.242

(0.013) and 0.105 (0.021) for EUR and EAS, respectively,

are lower than a previously reported mixed-model-based

estimate of 0.51 (0.065) in Europeans.45 We stress that

this discrepancy is most likely due to the correction of

genomic control in summary association data (such correc-

tion does not affect genetic-correlation estimates19) and

the difference between common-SNP heritability h2
c and

total narrow-sense heritability h2. Furthermore, estimates

of the heritability of T2D from family studies can vary

significantly.46,47

We found the genetic-effect correlation in RA and

T2D to be 0.463 (0.058) and 0.621 (0.088), respectively,

and the genetic-impact correlation was not significantly

different at 0.455 (0.056) and 0.606 (0.083), respectively.

The transethnic genetic-impact and genetic-effect correla-

tions for both phenotypes were significantly different

from both 1 and 0 (Table 2), showing that although

the phenotypes have clear genetic overlap, the per-

allele effect sizes differ significantly between the two

populations.



Figure 2. The Distributions of the Esti-
mates of Genetic Correlation Computed
with Popcorn and GCTA Are Compared
The distribution was computed via
Gaussian kernel density estimation on
the set of genetic-correlation estimates.
Summary Statistics of Height and BMI

To further validate that our observations were not a statis-

tical artifact, we used Popcorn to estimate the genetic cor-

relation of one trait in one population across studies and

compared it with those of GCTA and LDSC (LD Score).

We obtained sex-stratified summary statistics of height

and BMI from the GIANT consortium48 and used

Popcorn and LDSC to estimate the genetic correlation of

height and BMI. Values for GCTA were taken from Yang

al.49 Scores for Popcorn and LDSC were computed from

variants with an allele frequency above 5% in 1000 Ge-

nomes European-descent individuals, and genetic correla-

tion was computed with all strand-unambiguous variants

with an allele frequency above 5% in HapMap 3 (these

are supplied with the summary statistics). Popcorn’s sex-

stratified genetic correlations of height and BMI were not

significantly different from 1.0 or from those of LDSC or

GCTA (Table S2).
Discussion

We have developed transethnic genetic-effect and genetic-

impact correlations and provided a method for estimating

these quantities on the basis of only summary-level GWAS

information and suitable reference panels. We have

applied our estimator to several phenotypes: RA, T2D,

and gene expression. Although the GEUVADIS dataset

lacks enough power for inferring the genetic correlation

of single or small subsets of genes, we can make inferences

about the global structure of genetic correlation of gene

expression. We have found that the global mean genetic

correlation is low but that it increases substantially when

the heritability is high in both populations. In all pheno-

types analyzed, the genetic correlation was significantly
The American Journal of H
different from both 0 and 1. Our re-

sults show that global differences in

SNP effect size of complex traits can

be large. In contrast, effect sizes of

gene expression appear to be more

conserved where there is strong ge-

netic regulation.

It is not possible to draw conclu-

sions about polygenic selection from

estimates of transethnic genetic cor-

relation. The effect sizes can be

identical ðrge ¼ 1Þ while polygenic se-

lection acts to change only the allele

frequencies. Similarly, the effect sizes
can be different ðrge < 1Þ without selection. Differences

in effect sizes at common SNPs can result from many phe-

nomena. We expect that untyped and unimputed variants

that are differentially linked to observed SNPs, along with

rare or population-specific variants differentially linked to

observed SNPs, will contribute significantly. If a gene-gene

or gene-environment interaction exists but only marginal

effects are tested, the observed marginal effects could be

different in each population as a result of differences in

allele frequency, even if the interaction effect is the same

in both populations, and this will result in decreased ge-

netic correlation. Although within-locus (dominance) in-

teractions might also play a role,50 the magnitude of this

effect has been debated.51 Statistical noise could also be

to blame, given that within-population meta-analyses of

the same trait do not always show identical effects; how-

ever, we estimated the sex-stratified genetic correlation of

height and BMI and found that neither was significantly

different from 1, which agrees with previous results.49

We emphasize that we cannot differentiate between these

effects on the basis of this analysis alone, and establishing

how much each of these effects contributes to inter-popu-

lation differences in effect size will require further research.

Estimates of the transethnic genetic correlation are

important for several reasons. They might help inform

best practices for transethnicmeta-analysis and potentially

offer improvements over current methods that use FST to

cluster populations for analysis.4 Further, the transethnic

genetic correlation constrains the limit of out-of-sample

phenotype predictive power. If the maximum within-pop-

ulation correlation of predicted phenotype P to true

phenotype Y is rmax
YP ¼

ffiffiffiffiffi
h2
1

q
, then the maximum out-of-

population correlation is rmax
YP ¼ rge

ffiffiffiffiffi
h2
1

q
(Appendix A).

Our observation that the genetic correlation is low for
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Figure 3. Genetic Correlation as a Func-
tion of Heritability for Gene Expression
Themean and SE of the genetic correlation
of the set of genes with h2

1 and h2
2

exceeding threshold h in each analysis
(y axis) are plotted against h (x axis).
RA, T2D, and gene expression shows that out-of-popula-

tion phenotypic predictive power is quite low. Similarly,

it implies that assessing disease risk in non-Europeans on

the basis of current GWAS results might be problematic;

gaining insight into differences in genetic architecture

and improving risk assessment will necessitate increased

study of disease in many populations.

Although the genetic correlation ofmultiple phenotypes

in one population has a relatively straightforward defini-

tion, extending this to multiple populations motivates

multiple possible extensions. In this work, we have pro-

vided estimators for the correlation of genetic effect and

genetic impact, but other quantities related to the shared

genetics of complex traits between populations include

the correlation of explained variance, rge ¼ Corðs21b21;
s22b

2
2Þ, and the proportion of causal variants shared by

the two populations. Interestingly, although our goal was

to construct an estimator that determines the extent of

genetic sharing independently of allele frequency, we

have observed that the correlations of genetic effect and

genetic impact are similar. Furthermore, our simulations

show that under a random-effects model utilizing only

SNPs with an allele frequency above 5% in both popula-

tions, the true genetic-effect and genetic-impact correla-

tions are similar. We conclude that at variants common

in both populations, differences in effect size and not allele

frequency are driving the transethnic phenotypic differ-

ences in these traits.

Our approach to estimating genetic correlation has two

major advantages over mixed-model-based approaches.

First, utilizing summary statistics allows application of

the method without data-sharing and privacy concerns

that come with raw genotypes. Second, our approach is

linear in the number of SNPs and thus avoids the compu-
82 The American Journal of Human Genetics 99, 76–88, July 7, 2016
tational bottleneck required for esti-

mating the genetic relationship ma-

trix. Conceptually, our approach is

very similar to that taken by LD-

score regression. Indeed, the diagonal

of the LD-matrix product in one

population is exactly the LD scores

ðP2
1ii¼ liÞ. One could ignore our likeli-

hood-based approach and define

cross-population scores as ci ¼P
mr1imr2im in order to exploit the

linear relationship E½Z1iZ2i� ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2

p
=MÞrgi

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q
ci (a similar

approach can be taken for the ge-
netic-effect correlation). Given that LD-score regression

has been successfully used for computing the genetic corre-

lation of two phenotypes in a single population, this

derivation can be viewed as an extension of LD-score

regression to one phenotype in two different populations.

The main difference in our approach is choosing

maximum likelihood rather than regression in order to

fit the model. A comparison of our method to the LDSC

software shows that they perform similarly as heritability

estimators (Figure S7).

Of course, our method is not without drawbacks. First,

it requires a large sample size and large number of SNPs

to achieve SEs low enough for accurate estimation. Until

recently, large-sample GWASs have been rare in non-Euro-

pean populations, although they are becoming more

common. Similarly, the quality of reference panels could

suffer in non-European populations, which could affect

downstream analysis.52 Second, our method is limited to

analyzing relatively common SNPs, both because having

an accurate disease model is important for the analysis

of rare variants and because estimates of effect size and

correlation coefficients have a high SE at rare SNPs.17

Third, our analysis is currently limited to SNPs that are

present in both populations. Indeed, it is currently un-

clear how best to handle population-specific variants in

this framework. Fourth, our estimator of r is bounded

between �1 and 1. This could induce bias when the

true value is close to the boundary and the sample size

is small. Fifth and finally, admixed populations induce

very long-range LD that is not accounted for in our

approach, and we are therefore limited to unadmixed

populations.17

Our analysis leaves open several avenues for future work.

We approximately maximize the likelihood of an M3M



Table 2. Heritability and Genetic Correlation of RA and T2D between EUR and EAS Populations

hEUR
2 Liability hEAS

2 Liability rge rgi

RA estimate (SE) 0.18 (0.02) 0.22 (0.03) 0.46 (0.06) 0.46 (0.06)

95% CI [0.15, 0.21] [0.16, 0.28] [0.34, 0.58] [0.34, 0.58]

p > 0 3.90e�32 1.89e�17 1.37e�15 8.16e�16

p < 1 0.0 3.1e�197 2.53e�20 4.87e�22

T2D estimate (SE) 0.24 (0.01) 0.11 (0.02) 0.62 (0.09) 0.61 (0.08)

95% CI [0.22, 0.26] [0.07, 0.15] [0.44, 0.80] [0.45, 0.77]

p > 0 2.41e�77 5.73e�7 1.70e�12 2.85e�13

p < 1 0.0 0.0 1.066e�5 2.06e�6

EUR RA data contained 8,875 case and 29,367 control subjects for a study prevalence of 0.23. EAS RA data contained 4,873 case and 17,642 control subjects for a
study prevalence of 0.22. RA prevalence was assumed to be 0.5% in both populations.8 T2D EUR data contained 12,171 case and 56,862 control subjects for a
study prevalence of 0.18. T2D EAS data contained 6,952 case and 11,865 control subjects for a study prevalence of 0.37. T2D EUR prevalence was assumed to be
8%,42 whereas T2D EAS prevalence was assumed to be 9%.44 CI, confidence interval.
multivariate normal distribution via a method that uses

only the diagonal elements of each block and discards

covariance information between Z scores. A better approx-

imation might lower the SE of the estimator, facilitating

an analysis of the genetic correlation of functional cate-

gories, pathways, and genetic regions. We would also

like to extend our analysis to include population-specific

variants and variants with frequencies from 1% to 5%

or lower than 1%. Our simulations indicate that

having an accurate disease model is important for deter-

mining the difference between genetic-effect and ge-

netic-impact correlations when rare variants are included.

Maximum-likelihood approaches are well suited to

different genetic architectures. For example, one could

estimate both the global relationship between allele fre-

quency and effect size and the global relationship be-

tween per-SNP FST and genetic correlation by incorpo-

rating parameters a and Y into the prior distribution of

the effect sizes:

b1i; b2i � N
0@0;

24 h2
1s

a
1i rge

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q
Fg

STi

rge

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q
Fg

STi h2
2s

a
1i

351A:

We expect that incorporating these parameters will

improve estimates of heritability and genetic correlation

while revealing important biological insights.
Appendix A

Consider two GWASs of a phenotype conducted in

different populations. Assume we have N1 individuals gen-

otyped or imputed toM SNPs in study 1 andN2 individuals

genotyped or imputed to M SNPs in study 2. Let X1 and X2

and Y1 and Y2 be the matrices of mean-centered genotypes

and phenotypes, respectively, of the individuals in studies

1 and 2, respectively. Let f1 and f2 be the allele frequencies

of the M SNPs common to both populations. If we assume
Th
Hardy-Weinberg equilibrium, the allele variances are

s21 ¼ 2f1ð1� f1Þ and s22 ¼ 2f2ð1� f2Þ. Let b1 and b2 be the

(unobserved) per-allele effect size for each SNP in studies

1 and 2, respectively. Define the genetic-impact correla-

tion as rgi ¼ Corð
ffiffiffiffiffi
s21

q
b1;

ffiffiffiffiffi
s22

q
b2Þ and the genetic-effect

correlation as rge ¼ Corðb1; b2Þ. We present a maximum-

likelihood framework for estimating the heritability of

the phenotype in study 1 and its SE, the heritability of

the phenotype in study 2 and its SE, and the genetic-

effect and genetic-impact correlations of the phenotype

between the studies and their SEs given only the summary

statistics Z1 and Z2 and reference genotypes G1 and G2

representing the populations in the studies. We assume

that genotypes are drawn randomly from populations

with expected correlation matrices S1 and S2 and that

every SNP is causal with a normally distributed effect size

(although this assumption is not necessary in practice;

see Figure S1).

Genetic-Impact Correlation

Let X0
1 ¼ X1=

ffiffiffiffiffi
s21

q
(and similarly for study 2) be normalized

genotype matrices. We consider the standard linear model

for the generation of phenotypes, where Y1 ¼ X0
1b1 þ ε1

and Y2 ¼ X0
2b2 þ ε2.

For convenience of notation, let hix ¼ rgi

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q
. We

assume that the SNP effects follow the infinitesimal

model, where every SNP has an effect size drawn

from the normal distribution, and that the residuals

are independent for each individual and normally

distributed:�
b1

b2

�
� N

��
0
0

�
;
1

M

�
h2
1IM hixIM

hixIM h2
2IM

��
(Equation A1)

�
ε1

ε2

�
� N

0@�0
0

�
;

24�1� h2
1

�
IM 0

0
�
1� h2

2

�
IM

351A;

(Equation A2)
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where h2
1 and h2

2 are the heritability of the disease in

studies 1 and 2, respectively, and rgi is the genetic-impact

correlation.

Using the above model, we compute the distribution of

the observed Z scores as a function of the reference-panel

correlations and the model parameters (h2
1, h

2
2, and rgi).

Given a distribution for Z and an observation of Z, we

can then choose parameters that give the highest probabil-

ity of observing Z. First, we compute the distribution of Z.

It is well known that the Z scores of a linear regression are

normally distributed given b when the sample size is large

enough. Because PðZÞfPðZ j bÞPðbÞ and the product of

normal distributions is normal, we need to compute only

the unconditional mean and variance of Z to know its dis-

tribution. Specifically, let Z ¼ ½ZT
1 ;Z

T
2 �T. Then, its mean is

E½Z� ¼ E

26664
X0T

1 Y1ffiffiffiffiffiffi
N1

p

X0T
2 Y2ffiffiffiffiffiffi
N2

p

37775 ¼

26664
1ffiffiffiffiffiffi
N1

p 	
E


X0T

1 X
0
1

�
E½b1� þ E



X0T

1

�
E½ε1�

�
1ffiffiffiffiffiffi
N2

p 	
E


X0T

2 X
0
2

�
E½b2� þ E



X0T

2

�
E½ε2�

�
37775

¼ 0:

The within-population variance is

Cov


Z1i;Z1j

� ¼ E


Z1iZ1j

� ¼ EX;b;ε



E


Z1iZ1j j X; b; ε

��
¼ 1

N1

EX;b;ε

h
X0T

1i

	
X0

1b1 þ ε1

�	
X0

1b1 þ ε1

�T
X0

1j

i

¼ 1

N1

EX;b



X0T

1iX
0
1b1b

T
1X

T
1X2j

�þ 1

N1

EX;ε

h
X0T

1iε1ε
T
1X

0
1j

i

¼ h2
1

MN1

EX

h
X0T

1iX
0
1X

0T
1 X

0
1j

i
þ 1� h2

1

N1

EX

h
X0T

1iX
0
1j

i

¼ h2
1

MN1

 
N1Mr1ij þN1

X
m¼1

M

r1imr1jm þ N2
1

X
m¼1

M

r1imr1jm

!

þ 1� h2
1

N1

r1ij

¼ r1ij þN1 þ 1

M
h2
1S1ðiÞS

ðjÞ
1 ;

where rpij ¼ Spij is the correlation coefficient of SNP i and j

in population p. Similarly, the between-population vari-

ance is
C ¼ VarðZÞ ¼

26666664
S1 þN1 þ 1

ks2
1 k 1

h2
1S1s

2
1S1

hex

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks2

1 k 1ks2
2 k 1

q S2

ffiffiffiffiffi
s2
2

q
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Cov


Z1i;Z2j

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p EX;b

h
X0T

1iX
0
1b1b

u
2 X0T

2 X
0
2j

i
þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2

p EX;ε



X0u

1i ε1ε
u
2 X02j

�

¼ hix

M
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p EX

h
X0u

1i X
0
1X

0T
2 X

0
2j

i

¼ hix

M
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
 
N1N2

X
m¼1

M

r1imr2jm

!

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
M

hixS1ðiÞS
ðjÞ
2 ;

where SðiÞ denotes the ith row of S, and SðjÞ denotes the jth

column. The covariance of the Z scores is thus

C ¼ VarðZÞ ¼

26664
S1 þN1 þ 1

M
h2
1S

2
1 hix

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
M

S1S2

hix

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
M

S2S1 S2 þN2 þ 1

M
h2
2S

2
2

37775
(Equation A3)

and Z � Nð0;CÞ.
Genetic-Effect Correlation

Let hex ¼ rge

ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q
. We modify the procedure above to

use mean-centered instead of normalized genotype

matrices and model the distribution of the effect

sizes as

�
b1

b2

�
� N

0BBBBBBB@
�
0

0

�
;

266666664

h2
1

ks2
1 k 1

IM
hexffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ks2
1 k 1ks2

2 k 1

q IM

hexffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks2

1 k 1ks2
2 k 1

q IM
h2
2

ks2
2 k 1

IM

377777775

1CCCCCCCA:

(Equation A4)

Notice that a linear model with effect sizes acting

on unnormalized genotypes is the same as a linear

model with effect sizes acting on normalized

genotypes under the substitution b1;2/
ffiffiffiffiffiffiffiffi
s21;2

q
b1;2.

Therefore, the covariance of Z scores on the per-allele

scale can be immediately inferred from the prior

derivation:
hex

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks2

1 k 1ks2
2 k 1

q S1

ffiffiffiffiffiffiffiffiffiffi
s2
1s

2
2

q
S2

ffiffiffiffiffi
s2
1S1 S2 þN2 þ 1

ks2
2 k 1

h2
2S2s

2
2S2

37777775:



Approximate Maximum-Likelihood Estimation

Let C ¼
�
C11 C12

C21 C22

�
be either of the above covariance

matrices written in block form. We approximately opti-

mize the above likelihood as follows: first, we find h2
1 and

h2
2 by maximizing the likelihood corresponding to C11

and C22, and then we find rgi or rge bymaximizing the like-

lihood corresponding to C12:

l
�
h2
1 j Z1;S; s

�
z�

X
i¼1

M

w11i

�
lnðC11iiÞ þ Z2

1i

C11ii

�

l
�
h2
2 j Z2;S; s

�
z�

X
i¼1

M

w22i

�
lnðC22iiÞ þ Z2

2i

C22ii

�

l

 
rgfi;eg j Z;ch2

1 ;
ch2
2 ;S; s

!
z�

X
i¼1

M

w12i

�
lnðC12iiÞ þ Z1iZ2i

C12ii

�
:

Because we are discarding between-SNP covariance

information ðCovðZ1i;Z1jÞÞ, highly correlated SNPs will

be over-counted in our approximate likelihood. As a

simple example, notice that two SNPs in perfect LD will

each contribute identical terms to the approximate likeli-

hood and therefore should be downweighted by a factor

of 1/2. The extent to which SNP i is over-counted is

exactly the ith entry in its corresponding LD-matrix

product. Therefore, we let w
gi
jki ¼ 1=ðSjSkÞii and w

ge
jki ¼ 1=

ðSj

ffiffiffiffiffiffiffiffiffiffi
s2j s

2
k

q
SkÞii to reduce the variance in our estimates of

the parameters h2
1, h

2
2, rgi, and rge.

Furthermore, rather than compute the full products S2
1,

S2
2, and S1S2 over all M SNPs in the genome, we choose

a window size W and approximate the product by

ðSaSbÞii ¼
Pw¼iþW

w¼i�Wraiwrbiw. Although maximum-likelihood

estimation admits a straightforward estimate of the SE

via the fisher information, we found these estimates to

be inaccurate in practice. Instead, we use a block jackknife

with a block size equal to min ð100; ðM= 200ÞÞ SNPs to

ensure that blocks are large enough for the removal of re-

sidual correlations.

Out-of-Population Prediction of Phenotypic Values

Consider using the results of a GWAS with perfect power in

population 2 to predict the phenotypic values of a set of in-

dividuals from population 1. This defines the upper limit

of the correlation of true and predicted phenotypic values.

Let the true values of the effect sizes in population 2 be b2.

Let the true phenotypes in population 1 be Y ¼ X1b1 þ ε1

and the predicted phenotypes be P ¼ X1b2. We are inter-

ested in the correlation of the predicted and true pheno-

types rMAX
YP ¼ CorðY;PÞ. Notice that given X, the true and

predicted phenotype of each individual is an affine trans-

formation of a multivariate normal random variable (b):

�
Yi

Pi

�
¼
�
XðiÞ 0M

0M XðiÞ

��
b1

b2

�
þ
�
εi

0

�
:

Th
Therefore, (Yi, Pi) for individual i is multivariate normal

with the expected covariance matrix

EX½CovðYi;PiÞ� ¼ EX

�
XðiÞ 0M

0M XðiÞ

�

3

26666664

1

ks2
1 k 1

IM
hexffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ks2
1 k 1ks2

2 k 1

q IM

hexffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1 k 1ks2
2 k 1

q IM
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ks2
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IM

37777775
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26666664
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q
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X
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imffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks2

1 k 1ks2
2 k 1
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2

X
m
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im

ks2
2 k 1

37777775

¼

2666664
1 hex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks2

1 k 1

ks2
2 k 1

s

hex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks2

1 k 1

ks2
2 k 1

s
h2
2

ks2
1 k 1

ks2
2 k 1

3777775:

Therefore, the expected correlation E½CorðYi;PiÞ� is

hexffiffiffiffiffi
h2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks2

1 k 1

ks2
2 k 1

ks2
2 k 1

ks2
1 k 1

s
¼ rge

ffiffiffiffiffi
h2
1

q
:

The expected population correlation tends to the sample

correlation as the number of samples increases; therefore,

rMAX
YP ¼ CorðY; PÞ/rge

ffiffiffiffiffi
h2
1

q
(Equation A5)

as N/N.
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ajhg.2016.05.001.
Acknowledgments

The authors would like to acknowledge Lior Pachter, Hilary

Finucane, and Yukinori Okada for insightful discussion about

the problem. B.C.B. is supported by the National Science Founda-

tion Graduate Research Fellowship Program. A.L.P. is supported by

NIH grant R01 HG006399. N.Z. is supported by NIH grant

K25HL121295.

Received: December 19, 2015

Accepted: May 3, 2016

Published: June 16, 2016
e American Journal of Human Genetics 99, 76–88, July 7, 2016 85

http://dx.doi.org/10.1016/j.ajhg.2016.05.001
http://dx.doi.org/10.1016/j.ajhg.2016.05.001


Web Resources

DIAGRAM stage 1 data, http://diagram-consortium.org/

downloads.html

Popcorn, https://github.com/brielin/popcorn

Summary statistics of height and BMI, https://www.

broadinstitute.org/collaboration/giant/index.php/

GIANT_consortium_data_files

Summary statistics of RA, http://plaza.umin.ac.jp/~yokada/

datasource/software.htm
References

1. Robinson, M.R., Hemani, G., Medina-Gomez, C., Mezzavilla,

M., Esko, T., Shakhbazov, K., Powell, J.E., Vinkhuyzen, A.,

Berndt, S.I., Gustafsson, S., et al. (2015). Population genetic

differentiation of height and body mass index across Europe.

Nat. Genet. 47, 1357–1362.

2. Burt, V.L., Whelton, P., Roccella, E.J., Brown, C., Cutler, J.A.,

Higgins, M., Horan, M.J., and Labarthe, D. (1995). Prevalence

of hypertension in the US adult population. Results from the

Third National Health and Nutrition Examination Survey,

1988-1991. Hypertension 25, 305–313.

3. Coram, M.A., Candille, S.I., Duan, Q., Chan, K.H.K., Li, Y.,

Kooperberg, C., Reiner, A.P., and Tang, H. (2015). Leveraging

Multi-ethnic Evidence for Mapping Complex Traits in Minor-

ity Populations: An Empirical Bayes Approach. Am. J. Hum.

Genet. 96, 740–752.

4. Morris, A.P. (2011). Transethnic meta-analysis of genomewide

association studies. Genet. Epidemiol. 35, 809–822.

5. Bustamante, C.D., Burchard, E.G., and De la Vega, F.M. (2011).

Genomics for the world. Nature 475, 163–165.

6. Oh, S.S., Galanter, J., Thakur, N., Pino-Yanes, M., Barcelo, N.E.,

White, M.J., de Bruin, D.M., Greenblatt, R.M., Bibbins-Domi-

ngo, K., Wu, A.H.B., et al. (2015). Diversity in Clinical and

Biomedical Research: A Promise Yet to Be Fulfilled. PLoS

Med. 12, e1001918.

7. Coronary Artery Disease (C4D) Genetics Consortium (2011).

A genome-wide association study in Europeans and South

Asians identifies five new loci for coronary artery disease.

Nat. Genet. 43, 339–344.

8. Okada, Y.,Wu, D., Trynka, G., Raj, T., Terao, C., Ikari, K., Kochi,

Y., Ohmura, K., Suzuki, A., Yoshida, S., et al.; RACI consortium;

GARNET consortium (2014). Genetics of rheumatoid arthritis

contributes to biology and drug discovery. Nature 506,

376–381.

9. de Candia, T.R., Lee, S.H., Yang, J., Browning, B.L., Gejman,

P.V., Levinson, D.F., Mowry, B.J., Hewitt, J.K., Goddard, M.E.,

O’Donovan, M.C., et al.; International Schizophrenia Con-

sortium; Molecular Genetics of Schizophrenia Collaboration

(2013). Additive genetic variation in schizophrenia risk is

shared by populations of African and European descent. Am.

J. Hum. Genet. 93, 463–470.

10. Lee, S., Teslovich, T.M., Boehnke, M., and Lin, X. (2013).

General framework for meta-analysis of rare variants in

sequencing association studies. Am. J. Hum. Genet. 93, 42–53.

11. Palla, L., and Dudbridge, F. (2015). A Fast Method that Uses

Polygenic Scores to Estimate the Variance Explained by

Genome-wide Marker Panels and the Proportion of Variants

Affecting a Trait. Am. J. Hum. Genet. 97, 250–259.

12. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden,

P.A.F., Heath, A.C., Martin, N.G., Montgomery, G.W., Wee-
86 The American Journal of Human Genetics 99, 76–88, July 7, 2016
don, M.N., Loos, R.J., et al.; Genetic Investigation of

ANthropometric Traits (GIANT) Consortium; DIAbetes

Genetics Replication And Meta-analysis (DIAGRAM) Con-

sortium (2012). Conditional and joint multiple-SNP anal-

ysis of GWAS summary statistics identifies additional vari-

ants influencing complex traits. Nat. Genet. 44, 369–375,

S1–S3.

13. Pasaniuc, B., Zaitlen, N., Shi, H., Bhatia, G., Gusev, A., Pickrell,

J., Hirschhorn, J., Strachan, D.P., Patterson, N., and Price, A.L.

(2014). Fast and accurate imputation of summary statistics en-

hances evidence of functional enrichment. Bioinformatics 30,

2906–2914.

14. Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B., and Es-

kin, E. (2014). Identifying causal variants at loci with multiple

signals of association. Genetics 198, 497–508.

15. Hormozdiari, F., Kichaev, G., Yang, W.-Y., Pasaniuc, B., and Es-

kin, E. (2015). Identification of causal genes for complex traits.

Bioinformatics 31, i206–i213.

16. Kichaev, G., Yang,W.-Y., Lindstrom, S., Hormozdiari, F., Eskin,

E., Price, A.L., Kraft, P., and Pasaniuc, B. (2014). Integrating

functional data to prioritize causal variants in statistical fine-

mapping studies. PLoS Genet. 10, e1004722.

17. Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang,

J., Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M.;

Schizophrenia Working Group of the Psychiatric Genomics

Consortium (2015). LD Score regression distinguishes con-

founding from polygenicity in genome-wide association

studies. Nat. Genet. 47, 291–295.

18. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Re-

shef, Y., Loh, P.-R., Anttila, V., Xu, H., Zang, C., Farh, K.,

et al.; ReproGen Consortium; Schizophrenia Working Group

of the Psychiatric Genomics Consortium; RACI Consortium

(2015). Partitioning heritability by functional annotation us-

ing genome-wide association summary statistics. Nat. Genet.

47, 1228–1235.

19. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day,

F.R., Loh, P.-R., Duncan, L., Perry, J.R., Patterson, N., Robinson,

E.B., et al.; ReproGen Consortium; Psychiatric Genomics Con-

sortium; Genetic Consortium for Anorexia Nervosa of the

Wellcome Trust Case Control Consortium 3 (2015). An atlas

of genetic correlations across human diseases and traits. Nat.

Genet. 47, 1236–1241.

20. Park, D.S., Brown, B., Eng, C., Huntsman, S., Hu, D., Torger-

son, D.G., Burchard, E.G., and Zaitlen, N. (2015). Adapt-

Mix: learning local genetic correlation structure improves

summary statistics-based analyses. Bioinformatics 31, i181–

i189.

21. Xu, Z., Duan, Q., Yan, S., Chen,W., Li, M., Lange, E., and Li, Y.

(2015). DISSCO: direct imputation of summary statistics al-

lowing covariates. Bioinformatics 31, 2434–2442.

22. Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O’Dono-

van, M.C., Sullivan, P.F., and Sklar, P.; International Schizo-

phrenia Consortium (2009). Common polygenic variation

contributes to risk of schizophrenia and bipolar disorder. Na-

ture 460, 748–752.

23. Zuo, L., Zhang, C.K., Wang, F., Li, C.-S.R., Zhao, H., Lu, L.,

Zhang, X.-Y., Lu, L., Zhang, H., Zhang, F., et al. (2011). A novel,

functional and replicable risk gene region for alcohol depen-

dence identified by genome-wide association study. PLoS

ONE 6, e26726.

24. Fesinmeyer, M.D., North, K.E., Ritchie, M.D., Lim, U., France-

schini, N., Wilkens, L.R., Gross, M.D., B�u�zková, P., Glenn, K.,
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